September 30, 2022

findmeguilty-themovie

Technology Forever

Norovirus detection in water samples at the level of single virus copies per microliter using a smartphone-based fluorescence microscope

  • 1.

    Teunis, P. F. M. et al. Norwalk virus: how infectious is it? J. Med. Virol. 80, 1468–1476 (2008).

    Article 

    Google Scholar
     

  • 2.

    Greening, G. E. & Cannon, J. L. Human and animal viruses in food (including taxonomy of enteric viruses). in Viruses in Foods (eds Goyal, S.M. & Cannon, J.L.) 5-57 (Springer, 2016). https://doi.org/10.1007/978-3-319-30723-7_2

  • 3.

    Chung, S. et al. Smartphone-based paper microfluidic particulometry of norovirus from environmental water samples at single copy level. ACS Omega 4, 11180–11188 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Park, T. S. & Yoon, J.-Y. Smartphone detection of Escherichia coli from field water samples on paper microfluidics. IEEE Sens. J. 15, 1902–1907 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Park, T. S., Li, W., McCracken, K. E. & Yoon, J.-Y. Smartphone quantifies Salmonella from paper microfluidics. Lab Chip 13, 4832–4840 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Klug, K. E., Reynolds, K. A. & Yoon, J.-Y. A capillary flow dynamics-based sensing modality for direct environmental pathogen monitoring. Chem. Eur. J. 24, 6025–6029 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Ulep, T.-H. et al. Smartphone based on-chip fluorescence imaging and capillary flow velocity measurement for detecting ROR1+ cancer cells from buffy coat blood samples on dual-layer paper microfluidic chip. Biosens. Bioelectron. 153, 112042 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Kwon, H.-J., Dean, Z. S., Angus, S. V. & Yoon, J.-Y. Lab-on-a-chip for field Escherichia coli assays: long-term stability of reagents and automatic sampling system. JALA 15, 216–223 (2010).

    CAS 

    Google Scholar
     

  • 9.

    Yoon, J.-Y. Introduction to Biosensors: From Electric Circuits to Immunosensors 2nd edn, 153–170 (Springer, 2016). https://doi.org/10.1007/978-3-319-27413-3

  • 10.

    Ulep, T.-H. & Yoon, J.-Y. Challenges in paper-based fluorogenic optical sensing with smartphones. Nano Converg. 5, 14 (2018).

    Article 

    Google Scholar
     

  • 11.

    Ettayebi, K. et al. Replication of human noroviruses in stem cell–derived human enteroids. Science 353, 1387–1393 (2016).

    Article 

    Google Scholar
     

  • 12.

    Coudray-Meunier, C. et al. A comparative study of digital RT-PCR and RT-qPCR for quantification of Hepatitis A virus and Norovirus in lettuce and water samples. Int. J. Food Microbiol. 201, 17–26 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Rivadulla, E. & Romalde, J. L. A comprehensive review on human Aichi virus. Virol. Sin. https://doi.org/10.1007/s12250-020-00222-5 (2020).

  • 14.

    de Bruin, E., Duizer, E., Vennema, H. & Koopmans, M. P. Diagnosis of Norovirus outbreaks by commercial ELISA or RT-PCR. J. Virol. Meth. 137, 259–264 (2006).

    Article 

    Google Scholar
     

  • 15.

    Park, J. P., Cropek, D. M. & Banta, S. High affinity peptides for the recognition of the heart disease biomarker troponin I identified using phage display. Biotechnol. Bioeng 105, 678–686 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Burton-Macleod, J. A. et al. Evaluation and comparison of two commercial enzyme-linked immunosorbent assay kits for detection of antigenically diverse human noroviruses in stool samples. J. Clin. Microbiol. 42, 2587–2595 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Dimitriadis, A., Bruggink, L. D. & Marshall, J. A. Evaluation of the Dako IDEIA norovirus EIA assay for detection of norovirus using faecal specimens from Australian gastroenteritis outbreaks. Pathology 38, 157–165 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Richards, A. F. et al. Evaluation of a commercial ELISA for detection Norwalk-like virus antigen in faeces. J. Clin. Virol. 26, 109–115 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Okitsu-Negishi, S. et al. Detection of Norovirus antigens from recombinant virus-like particles and stool samples by a commercial Norovirus enzyme-linked immunosorbent assay kit. J. Clin. Microbiol. 44, 3784–3786 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Mansfield, M. A. in Lateral Flow Assays (eds Wong, R. & Tse, H.) 1–19 (Humana Press, 2009).

  • 21.

    Li, H., Han, D., Hegener, M. A., Pauletti, G. M. & Steckl, A. J. Flow reproducibility of whole blood and other bodily fluids in simplified no reaction lateral flow assay devices. Biomicrofluidics 11, 024116 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Cho, S., Park, T. S., Nahapetian, T. & Yoon, J.-Y. Smartphone-based, sensitive μPAD detection of urinary tract infection and gonorrhea. Biosens. Bioelectron. 74, 601–611 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Yoon, J.-Y., Park, H.-Y., Kim, J.-H. & Kim, W.-S. Adsorption of BSA on highly carboxylated microspheres—quantitative effects of surface functional groups and interaction forces. J. Colloid Interface Sci. 177, 613–620 (1996).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Cho, S., Park, T. S., Reynolds, K. A. & Yoon, J.-Y. Multi-normalization and interpolation protocol to improve norovirus immunoagglutination assay from paper microfluidics and smartphone detection. SLAS Technol. 23, 30–43 (2018).


    Google Scholar
     

  • 25.

    Eyupoglu, C. Implementation of Bernsen’s locally adaptive binarization method for gray scale images. Online J. Sci. Technol. 7, 68–72 (2017).


    Google Scholar