Determination of the Dzyaloshinskii-Moriya interaction using pattern recognition and machine learning

  • 1.

    Dzyaloshinskii, I. E. Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259 (1957).


    Google Scholar
     

  • 2.

    Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Ferriani, P. et al. Atomic-scale spin spiral with a unique rotational sense: Mn monolayer on W(001). Phys. Rev. Lett. 101, 027201 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Heide, M., Bihlmayer, G. & Blugel, S. Dzyaloshinskii-Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110). Phys. Rev. B 78, 140403 (2008).

    Article 
    CAS 

    Google Scholar
     

  • 5.

    Chen, G. et al. Tailoring the chirality of magnetic domain walls by interface engineering. Nat. Commun. 4, 2671 (2013).

    Article 
    CAS 

    Google Scholar
     

  • 6.

    Muhlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Thiaville, A., Rohart, S., Jue, E., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012).

    Article 
    CAS 

    Google Scholar
     

  • 10.

    Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8, 527 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Jiang, W. J. et al. Blowing magnetic skyrmion bubbles. Science 349, 283 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 8, 839 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    P. del Real, R., Raposo, V., Martinez, E. & Hayashi, M. Current-induced generation and synchronous motion of highly packed coupled chiral domain walls. Nano Lett. 17, 1814 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Parkin, S. & Yang, S.-H. Memory on the racetrack. Nat. Nanotechnol. 10, 195 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Luo, Z. C. et al. Chirally coupled nanomagnets. Science 363, 1435 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Hrabec, A. et al. Measuring and tailoring the dzyaloshinskii-moriya interaction in perpendicularly magnetized thin films. Phys. Rev. B 90, 020402 (2014).

    Article 
    CAS 

    Google Scholar
     

  • 21.

    Je, S.-G. et al. Asymmetric magnetic domain-wall motion by the dzyaloshinskii-moriya interaction. Phys. Rev. B 88, 214401 (2013).

    Article 
    CAS 

    Google Scholar
     

  • 22.

    Di, K. et al. Direct observation of the dzyaloshinskii-moriya interaction in a Pt/Co/Ni film. Phys. Rev. Lett. 114, 047201 (2015).

    Article 
    CAS 

    Google Scholar
     

  • 23.

    Pai, C.-F., Mann, M., Tan, A. J. & Beach, G. S. D. Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy. Phys. Rev. B 93, 144409 (2016).

    Article 
    CAS 

    Google Scholar
     

  • 24.

    Kim, S. et al. Magnetic droplet nucleation with a homochiral neel domain wall. Phys. Rev. B 95, 220402 (2017).

    Article 

    Google Scholar
     

  • 25.

    Rohart, S. & Thiaville, A. Skyrmion confinement in ultrathin film nanostructures in the presence of dzyaloshinskii-moriya interaction. Phys. Rev. B 88, 184422 (2013).

    Article 
    CAS 

    Google Scholar
     

  • 26.

    Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Tetienne, J. P. et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry. Nat. Commun. 6, 6733 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Nakatani, Y., Uesaka, Y. & Hayashi, N. Direct solution of the landau-lifshitz-gilbert equation for micromagnetics. Jpn. J. Appl. Phys. 28, 2485 (1989).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Thiaville, A., Benyoussef, J., Nakatani, Y. & Miltat, J. On the influence of wall microdeformations on bloch line visibility in bubble garnets. J. Appl. Phys. 69, 6090 (1991).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Yamada, K. et al. Influence of instabilities on high-field magnetic domain wall velocity in (Co/Ni) nanostrips. Appl. Phys. Express 4, 113001 (2011).

    Article 
    CAS 

    Google Scholar
     

  • 32.

    Krupinski, M., Sobieszczyk, P., Zielinski, P. & Marszalek, M. Magnetic reversal in perpendicularly magnetized antidot arrays with intrinsic and extrinsic defects. Sci. Rep. 9, 13276 (2019).

    Article 
    CAS 

    Google Scholar
     

  • 33.

    Torrejon, J. et al. Interface control of the magnetic chirality in CoFeB/MgO heterostructures with heavy-metal underlayers. Nat. Commun. 5, 4655 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Belmeguenai, M. et al. Interfacial dzyaloshinskii-moriya interaction in perpendicularly magnetized Pt/Co/AlOx ultrathin films measured by brillouin light spectroscopy. Phy. Rev. B 91, 180405 (2015).

    Article 
    CAS 

    Google Scholar
     

  • 35.

    Kim, S. et al. Correlation of the dzyaloshinskii-moriya interaction with heisenberg exchange and orbital asphericity. Nat. Commun. 9, 1648 (2018).

    Article 
    CAS 

    Google Scholar
     

  • 36.

    Kuepferling, M. et al. Measuring interfacial dzyaloshinskii-moriya interaction in ultra thin films. Preprint at https://arxiv.org/abs/2009.11830 (2020).

  • 37.

    Pajda, M., Kudrnovsky, J., Turek, I., Drchal, V. & Bruno, P. Ab initio calculations of exchange interactions, spin-wave stiffness constants, and curie temperatures of Fe, Co, and Ni. Phys. Rev. B 64, 174402 (2001).

    Article 
    CAS 

    Google Scholar
     

  • 38.

    Moreno, R. et al. Temperature-dependent exchange stiffness and domain wall width in Co. Phys. Rev. B 94, 104433 (2016).

    Article 
    CAS 

    Google Scholar
     

  • 39.

    Okuda, M., Miyamoto, Y., Miyashita, E. & Hayashi, N. Evaluation of magnetic flux distribution from magnetic domains in co/pd nanowires by magnetic domain scope method using contact-scanning of tunneling magnetoresistive sensor. J. Appl. Phys. 115, 17d113 (2014).

    Article 
    CAS 

    Google Scholar
     

  • 40.

    Nakatani, Y., Thiaville, A. & Miltat, J. Faster magnetic walls in rough wires. Nat. Mater. 2, 521 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Sato, T. & Nakatani, Y. Fast micromagnetic simulation of vortex core motion by gpu. J. Magn. Soc. Jpn. 35, 163 (2011).

    Article 

    Google Scholar
     

  • 42.

    Nakatani, Y., Uesaka, Y., Hayashi, N. & Fukushima, H. Computer simulation of thermal fluctuation of fine particle magnetization based on langevin equation. J. Magn. Magn. Mater. 168, 347 (1997).

    CAS 
    Article 

    Google Scholar